An Empirical Evaluation of Noise Contrastive Estimation for the Neural Network Joint Model of Translation

نویسنده

  • Colin Cherry
چکیده

The neural network joint model of translation or NNJM (Devlin et al., 2014) combines source and target context to produce a powerful translation feature. However, its softmax layer necessitates a sum over the entire output vocabulary, which results in very slow maximum likelihood (MLE) training. This has led some groups to train using Noise Contrastive Estimation (NCE), which side-steps this sum. We carry out the first direct comparison of MLE and NCE training objectives for the NNJM, showing that NCE is significantly outperformed by MLE on large-scale ArabicEnglish and Chinese-English translation tasks. We also show that this drop can be avoided by using a recently proposed translation noise distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Binarized Neural Network Joint Model for Machine Translation

The neural network joint model (NNJM), which augments the neural network language model (NNLM) with an m-word source context window, has achieved large gains in machine translation accuracy, but also has problems with high normalization cost when using large vocabularies. Training the NNJM with noise-contrastive estimation (NCE), instead of standard maximum likelihood estimation (MLE), can redu...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)

Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...

متن کامل

Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks

Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...

متن کامل

Improving Language Modelling with Noise-contrastive estimation

Neural language models do not scale well when the vocabulary is large. Noise contrastive estimation (NCE) is a sampling-based method that allows for fast learning with large vocabularies. Although NCE has shown promising performance in neural machine translation, its full potential has not been demonstrated in the language modelling literature. A sufficient investigation of the hyperparameters ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016